Natrix HD-Sb Membrane Adsorber

A New High-Performance Purification Tool for mAb Purification in Flowthrough Mode

James Stout, Dharmesh Kanani, Annabel Shang, Nirali Paghdal, Renaud Jacquemart

251st ACS National Meeting & Exposition (San Diego, CA) March 15, 2016

Natrix Separations Inc.

Burlington, Ontario, Canada

Project Goals

- Develop a fully single-use mAb purification platform
 - Implement a single use CEX step
 - Includes replacing ProA resin column by ProA membrane
- Improve process productivity
 - Two FT steps:
 - CFX in FT mode.
 - Complements/enables high load AEX FT step
 - Tandem CEX_AEX possible

Intensification & Simplification

Industry Needs For High Productivity Affinity Purification Platforms (mAbs & other biologics)

High productivity while maintaining purification efficacy

- Rapid processing with high selectivity
- High yield capture with minimal feed preparation simplicity
- Robustness: consistent performance even in changing conditions

Simplified and reliable manufacturing process

- Very high purity in single step, minimal polishing needed
- Fewer process steps to achieve target purity
- Increase in process reliability for fewer OOS batches

Increased flexibility

- Flex platforms, widely applicable to most processes
- Dynamic, faster process development & easy technology transfer
 - Responsive to process and product needs

Natrix HD Technology

Natrix HD Membranes

- Reinforced, porous polymer hydrogels containing a high density of binding groups
- Unique, interconnected pore structure provides large surface area for protein binding and high membrane permeability
- Dominated by Advective Flow
- → High Binding Capacity for Proteins, Virus and DNA
- → High Flow Rates

Pre-packed in ready to use, disposable columns

- Flexibility and economic benefits of single-use
- Easy to use from lab scale to GMP

Goal 1

Develop a fully single-use process

- Increase flexibility and productivity to minimize cost of goods
- Replace the ProA resin column with ProA membrane
- HD-Sb in Bind/Elute mode
- HD-Q: AEX with extended buffer compatibility

Affinity membranes

- Natrix has developed libraries of 100's of membranes
 - contain reactive pendant groups for attaching affinity ligands
- The ProA ligand is coupled to optimized reactive membranes
 - maximize binding capacity and impurity clearance

HD-Sb Salt Tolerant CEX w HIC modality

- CEX group sulfonic acid
- HIC group t-butyl
- High binding capacity and salt tolerant
- Target application
 - Capture or polishing of mAbs
 - Removal of mAb aggregates and HCP
 - Bind/elute or flowthrough
 - Flexible binding & elution conditions
 - Base stable (1M NaOH)

Implementation of Single-Use CEX: HD-Sb

Bind & Elute Performance (2 layer screening device)

Parameter	Performance
Load	50 mg of mAb/mL of membrane
Aggregate Clearance	≈100%
Load	8.1%
Eluate	Not Detectable
Monomer Yield	92%

Excellent separation at high productivity

Flow rate: 10 MV/min

Equilibration: 45 mM Na-acetate + 130 mM NaCl, pH 4.5 & 16.3 mS/cm

Sample: 1 g/L mAb2 in equilibration buffer

Wash: 20 mM phosphate, pH 6.3

Elution: 20 mM phosphate + NaCl, pH 6.3 & 6 mS/cm

Evaluating New ProA Membranes

Do ProA membranes have good capacity and impurity reduction for different mAbs & buffers?

HD-A Capture: Robust Impurity Clearance Across Multiple Buffer Systems

	mAb 2	mAb 3	mAb 4
		Eluate HCP (pp	m)
Feed HCP (ppm)	89,667	285,948	1,417,391
PBS buffer	307	527	1,171
Bis-Tris Acetate buffer	382	710	1,782
Phosphate buffer	2,597	294	3,098

Load: 30 mg/mL

Residence time: HD-A Membrane = 6 seconds

Test Cell: 1 layer of membrane (0.1 mL)

Yield: 85-95%

HD-A Capture: Excellent Impurity Clearance For Multiple Mabs (competes with ProA resin)

		HD-A Membrane		Protein A Resin Column	
	Feed HCP (ppm)	Load (mg/ mL)	Eluate HCP (ppm)	Load (mg/ mL)	Eluate HCP (ppm)
mAb 1 (*)	25,600	30	102	25	203
mAb 2 (*)	89,667	30	307	25	247
mAb 3	319,649	25	527	25	2,404
mAb 4	1,417,391	30	1,171	25	1,123

^(*) Pre-treated mAb

Residence time: HD-A Membrane = 6 seconds; Protein A Resin Column = 4 minutes

Typical leached ProA <10 ppm for both resin and membrane

Yield: comparable (85-95%)

Performance Of The Membrane Antibody Process Is Comparable To The Chromatography Resin Process

Resin Process

4 min residence time

B&E Load: 25 g/L

B&E Yield: 95%

Elution HCP = 2,476 ppm

B&E Load: 50 g/L

B&E Yield: 80%

Elution HCP = 77 ppm

FT Load: 250 g/L

Clarified biosimilar mAb HCP: 342,188ppm

Pro A

S

Membrane Process 6 sec residence time

B&E Load: 40 g/L

B&E Yield: 95%

HD-A Elution HCP = 294 ppm

B&E Load: 55 g/L

B&E Yield: 85%

HD-Sb Elution HCP = 21 ppm

FT Load: 20,000 g/L

FT Yield: 99%

HD-Q FT HCP = 9 ppm

11

Goal 2

- Improve process productivity
 - 2 FT steps: CEX in FT mode; AEX FT final polish
- High productivity IEX membranes (Tune in productivity)
 - HD-Sb: Great performance in high conductivity
 - Process opportunity & flexibility
 - High loading capabilities at low residence time multiply productivity

Case Study: Optimized Productivity DSP for an Innovator mAb

- mAb to polish post ProA capture has high HMW content
- High DSP productivity obtained with membranes
 - Further increased by changing CEX Bind/Elute step to FT step
- Productivity of the optimized double-FT membrane DSP
 - Enhanced by directly connecting the 2 FT steps
 - No buffer adjustment between IEX steps

HD-Sb:

HD-Sb Flowthrough Mode Performance:

High Aggregate Clearance (2 layer screening device)

Parameter	Performance
Load	300 mg of mAb/mL of membrane
Residence Time	0.1 minute
HCP Clearance	81%
Load (ppm)	247
Flowthrough (ppm)	47
Aggregate Clearance	95%
Load	10.4%
Flowthrough	0.5%
Monomer Yield	>90%

Excellent separation at very high productivity

Equilibration: 50 mM Acetate + NaCl, pH 5.5 & 10 mS/cm Sample: 10.5 g/L Protein A purified mAb2, pH 5.5 & 10 mS/cm

Strip: 25 mM Tris + 1 M NaCl, pH 8.1

Tandem Process without Sample Adjustment:

HD-Sb → HD-Q

Parameter	Performance
Load	300 mg of mAb/mL of membrane
Residence Time	0.1 minute
HCP Clearance	89%
Load (ppm)	239
Flowthrough (ppm)	26
Aggregate Clearance	94%
Load	9.9%
Flowthrough	0.6%
Monomer Yield	90%

Potential for continuous processing

Equilibration: 25 mm Tris, pH 7.5 & 2 mS/cm

Sample: 3.5 g/L Protein A purified mAb2, pH 7.5 & 2 mS/cm

Strip: 25 mM Tris + 1 M NaCl, pH 8.1

Conclusions

- Single-use process achieves target quality attributes for mAbs
- Two FT steps provide further optimization of media utilization
 - Reduction of overall DSP time; better productivity; improved economics
- Process productivity is further enhanced by directly connecting the 2 FT steps with no sample/buffer adjustment
- Single-use process multiplies productivity compared to traditional column process
 - Flexibility and productivity improved for enhanced DSP competitiveness

Acknowledgement

Natrix Process Sciences

- Renaud Jacquemart
- Dharmesh Kanani
- Daniel Luo
- Nirali Paghdal
- Annabel Shang
- Navneet Sidhu
- Melissa Vandersluis
- Mochao Zhao

Natrix R&D

- Gary Skarja (Dir. R&D)
- Elena Komkova
- Amro Ragheb
- John Grande

Collaborators & Scientific Advisors

- Merck & Co. (D. Pollard, M. Brower, A. Gospodarek, Y. Hou)
- CMC Biologics (S. Waugh, S. Lee)
- Patheon Biologics (P. Jorjorian, K. Pleitt)
- JSR (M. Siwak, E. Johnson & team)
- Many more in the industry

Natrix Management & teams

- John Chickosky (CEO)
- Peter Tunon (VP Sales/Marketing)
- Brad Kachuik (Dir. Operations)
- Dorian Anderson (Dir. Quality)

